Wetland Hydrology

August 15th, 2018
Presented by: Stacey Clark, Regional Ecologist
Acknowledgements

Portions of this presentation were borrowed from:

Richard Weber, Retired NRCS Engineer
Jason Roth, MN NRCS Engineer
Kyle Steele, Ecologist USFS
Lisa Kluesner, Ecologist USDA-NRCS
USGS
USFWS
USDA-NRCS
What Makes a Wetland?

- Soils
- Vegetation
- Landscape Position
- Morphology (shape of the wetland basin)
- Hydrologic Factors

Figure 1. The hydrologic cycle for part of a watershed.
Morphology (shape of the wetland basin)

- Depth to water table
- Hydrologic Factors

Slopes and Depressions
Flats
Hydrologic Factors

- **Source** of Water (Precipitation, Surface Flow, Groundwater)
- **Flow Direction** of Water
- **Amount** of Water (magnitude)
- **Duration** (residence time)
- **Timing** (season, frequency)

Image courtesy of Richard Weber
Source of Water: Precipitation

(3 T’s):

- **Type**
 - Snow
 - Snowmelt
 - Ice
 - Rain
 - Condensation

- **Time of year (Season)**
 - Presence of vegetation
 - State of soil
 - Runoff/Erosion

- **Timing of recurrence**
 - Soil saturation
 - Water table levels
Source of Water: Surface Flow

The flow of water across the surface of the land, "Runoff"
Source of Water: Groundwater

Water held underground

- Maintains water table level fluctuations in wetland ecosystems

- Important source of water for human use and consumption
Flow Direction of Water

Water can leave the site through:

- Evaporation (temperature)
- Evapotranspiration (plants)
- Surface flow/Lateral Flow
- Infiltration (soil)
- Groundwater
Where is the groundwater going?

Recharge vs. Discharge

Water flows out of wetland down through the soil profile and **into the aquifer/groundwater**

Water flows out of the aquifer/groundwater **into the wetland**

Amount of Water (magnitude)

Dependent on:
- Source of water
- Size of catchment area (wetland basin)

Flow Accumulation:

(1^{st} order streams have a 1.25 acre catchment area)
Duration ("residence time")

How long does water stay in a wetland?

- Determines chemical and biotic properties of the wetland (nutrient status, plant species, etc.)
- Indicates how rapidly the water in the system is "replaced"
- Determined by:
 - Soils
 - Climate (precipitation events, temperature)
 - Flooding
 - Landscape position
 - Catchment size
 - Land Use
 - Wetland Quality (presence of vegetation)

Photo courtesy of Capel et. al, 2018
Timing

Time of Year

Frequency of Occurrence

https://skepticalscience.com/
Wetland Hydrology: Water Budgets

1. Balance between inflows and outflows of water
2. The surface contours of the landscape
3. Subsurface soil, geology, and groundwater conditions

\[P + Qin = ET + \Delta S + Qout \] (A1)

where

- \(P \) is precipitation,
- \(Qin \) is water flow into the watershed,
- \(ET \) is evapotranspiration (the sum of evaporation from soils, surface-water bodies, and plants),
- \(\Delta S \) is change in water storage,
- and
- \(Qout \) is water flow out of the watershed.

(Healy et al. 2007)
References

