Alligatorweed biological control in the U.S.

Nathan E. Harms
U.S. Army Engineer Research and Development Center, Aquatic Ecology and Invasive Species Branch
Vicksburg, MS

ASWM Webinar series

November 2017
The USACE and weed control...
Alligatorweed
(Alternanthera philoxeroides)

- Perennial aquatic amaranth
- Roots in shallow water or on bank and creeps across water
 - Hollow stems
 - Adventitious roots at nodes
 - Also grows terrestrially
- Vegetative reproduction
- Native to Parana River region, South America
- Present in US for >100 yrs
Two genotypes in US

Narrow-stemmed type (NSA)
- Northern distribution*
- Denser stems
- Shorter, rounder leaves
- Slower-growing
- Better defended against herbivores?*
- More susceptible to herbicides? (Kay 1992)

Broad-stemmed type (BSA)
- Southern distribution*
- Hollow stems
- Longer, narrower leaves
- Faster-growing
- Less defended?*
- More resistant to herbicides? (Kay 1992)
Distribution

- Southeastern US and California
 - Not common in northern areas
- Also introduced into China, Australia, New Zealand

Winston et al. (2017)
Impacts
Impacts

• Obstructs navigation
• Impacts water delivery
• Increases sedimentation
• Reduces oxygen levels below mats
• Impact native diversity
Brief history of alligatorweed biological control

• USACE and USDA foreign surveys 1960 – 1962
• 40 insect species
 – 5 damaging
• 4 insects tested in host range – Argentina and Uruguay & quarantine in Albany, CA
• 3 approved for release
• Later, fungal pathogen discovered
Alternaria alternantherae
(Alligatorweed leaf spot pathogen)

- First discovered near Baton Rouge, LA
 - 1976
 - Produces purple lesions on leaves, leads to abscission
- Can be very damaging
- May have non-target effects
- Possible use with other agents
Amynothrips andersonii
(Alligatorweed thrips)

• Argentina population released (1968 – AL, TX & MS) and (1967 – CA, FL, GA & SC)
• Common and widespread
 – Abundance varies
• Red larvae, black adults
• Life cycle – average 28 days
• Deposit eggs on hairs of nodes of apical leaves
Amynothrips andersonii (Alligatorweed thrips)

- Larval development – 13 days
- 2 larval stages; resting pupal stage on plant
- Feed in growing tips
 - Deformed leaves, stunting of the plant
- Edges of leaves often curl inward – provides shelter
- Feed on aquatic and terrestrial plants
Amynothrips andersonii
(Alligatorweed thrips)
Arcola malloii (=Vogtia malloii) (Alligatorweed stem borer)

- Tan moth
- Life cycle – approximately 39 days
- Females deposit single white egg on underside of leaves
- Pale white caterpillar with wavy stripes
- Caterpillars tunnel into tips of stems
- Larvae chew exit holes for emerging moths
Arcola malloi (=Vogtia malloi) (Alligatorweed stem borer)

- Argentina – released in FL & GA in 1971
- Argentina – released in GA & SC (cold tolerant)
- Argentina - released in NC in 1971 and AL in 1972
Arcola malloii
(Alligatorweed stem borer)
Agasicles hygrophila
(Alligatorweed flea beetle)

- Brought to US in 1964
- Distinct yellow and black stripes
- Well-developed wings and capable of flying
 - Strong dispersers
- Jump when disturbed
- Life span ~48 days
- Limited to areas where winter temperatures above 11.1ºC
Agasicles hygrophila (Alligatorweed flea beetle)

- Brought to US in 1964
- Distinct yellow and black stripes
- Well-developed wings and capable of flying
 - Strong dispersers
- Jump when disturbed
- Life span ~48 days
- Limited to areas where winter temperatures above 11.1°C
Agasicles hygrophila
(Alligatorweed flea beetle)

- Yellow eggs deposited in clusters on underside of leaves
- One egg cluster per day – average 1,127 eggs per female!
Agasicles hygrophila
(Alligatorweed flea beetle)

- Larvae feed on underside of leaves
- When mature – bore into hollow stem and pupate
- ~2 weeks from hatch to adult emergence
Agasicles hygrophila
(Alligatorweed flea beetle)

- Argentina - released in 1964 in CA & SC; 1965 in FL
- Uruguay - released in 1965 in SC
Control can be rapid!

1965

1966

Ortega River, Jacksonville, FL

Photos courtesy of USACE ISMB
Control can be rapid!
Challenges

- Winter severity tied to northern range limits of agents
Challenges

Succession of other undesirable species

Simultaneous restoration may mitigate additional problems
Current/ future research

- Distribution of plant genotypes in US
- Combination of biocontrol and plant competition
- Document seasonal patterns of control related to climate
 - Importance of seasonal attack on plant suppression
- Interaction between insect and pathogen agents
- New agents?
Availability of agents

- *Agasicles hygrophila* only agent currently available
- Funded by **USACE APCRP**
- Supplied by SAJ Invasive Species Management Branch
- ~42,000 per year from 1981-2004
Availability of agents

- Permits to ship:
 - AR, AL, GA, LA, MS, NC, OK, SC, TN, TX, VA

- Collections made in spring each year
Instructions included for handling/release
Site selection, number per acre
Return shipping
Who is eligible to receive agents?

- Local, state and federal organizations

- Provide: name, physical mailing address, email, cell phone number, acreage present

- Contact Angie Huebner – USACE Jacksonville District

 - Via email: angie.l.huebner@usace.army.mil
 - Via cell phone: 904-894-3648