Creating a Value-Added Wetlands Layer: Enhancing the Utility of Wetland Mapping in Montana

Karen Newlon
Montana Natural Heritage Program
Helena, MT
Wetland and riparian digital mapping are a data layer in the Montana Spatial Data Infrastructure.

Goal: create statewide digital wetland and riparian mapping.
Wetland and Riparian Classification Standards

Classification of Wetlands and Deepwater Habitats of the United States

U.S. Department of the Interior
Fish and Wildlife Service

A System for Mapping Riparian Areas In The Western United States

U.S. Fish and Wildlife Service
Division of Habitat and Resource Conservation
Branch of Resource and Mapping Support
Arlington, VA 22203

November 2009
**Riparian definition:**

Plant communities contiguous to and affected by surface and subsurface hydrologic features of rivers, streams, lakes, or drainage ways. Riparian areas are usually transitional between wetland and upland.

- Different vegetative species than adjacent areas
- The same species but exhibiting more vigorous or robust growth forms.
Riparian Mapping

- Woody riparian areas associated with lotic systems are the predominant features

- Emergent cover is also mapped if imagery allows for identification of these features
Wetland and Riparian Mapping Center

- Started in 2006 with funding from an EPA Wetland Program Development Grant
- Seven full-time photo interpreters
- Have access to necessary infrastructure and software
- Funding comes from many partners
Wetland and Riparian Mapping Status by USGS Topographic Quad

Wetland and Riparian Mapping Status
- Green: Mapping completed by and available from MTNHP
- Dark Green: Historic NWI Mapping completed by USFWS
- Yellow: Mapping in progress by MTNHP
- Gray: No Wetland and Riparian Mapping Available

County Boundary

Last Updated: December 3, 2013
Accessing Wetland and Riparian Mapping

Download Geodatabase from Montana Geographic Information

Geographic Information
Providing Montana a sense of place

Montana Wetland and Riparian Framework ★ MSDI

Download Data

Data Provider  Montana Natural Heritage Program (MTNHP)

Date  02/01/2013

Content Type  Downloadable Data

Abstract  The Montana Wetland and Riparian Framework represents the extent, type, and approximate location of wetlands, riparian areas, and deepwater habitats in Montana. These data delineate the areal extent of wetlands and deepwater habitats as defined by Cowardin et al. (1979) and riparian areas as defined by the U.S. Fish and Wildlife Service (2009). The Montana Wetland and Riparian Framework consists of features that were manually digitized at a scale of 1:4,500 or 1:5,000 from orthorectified digital color-infrared aerial imagery collected during the summers of 2005, 2006, 2009, and 2011 by the National Agricultural Imagery Program (NAIP). These data are intended for use in the planning and management of Montana’s wetlands and riparian areas.
## Accessing Wetland and Riparian Mapping

http://gis.service.mt.gov/ArcGIS/rest/services/MSDI_Framework/WetlandsRiparian/MapServer

### Geographic Information

Providing Montana a sense of place

- MSL Home  
- MSDI  
- Data  
- Geography  
- Web Changes

### Montana Wetland and Riparian Framework - Web Service

- **MSDI**

### Download Data

- **Data Provider**: Montana Natural Heritage Program (MTNHP)
- **Date**: 02/01/2013
- **Content Type**: Downloadable Data

### Data List Quick Search

- **Search by single word or exact phrase**
- **Advanced Search**

- **Browse Full Data List**

### Data Categories

- Category Definitions
- Montana Spatial Data Infrastructure
- Biota
- Boundaries
- Climatology/Meteorology/Atmosphere
- Economy
- Elevation
- Environment
- Farming
- Geoscientific Information
- Health
- Imagery/Base Maps/Earth Cover
- Inland Waters
- Intelligence/Military
- Location
- Oceans
- Planning Cadastre
- Society
- Elevation

### Abstract

The Montana Wetland and Riparian Framework represents the extent, type, and approximate location of wetlands, riparian areas, and deepwater habitats in Montana. These data delineate the areal extent of wetlands and deepwater habitats as defined by Cowardin et al. (1979) and riparian areas as defined by the U.S. Fish and Wildlife Service (2005). The Montana Wetland and Riparian Framework consists of features that were manually digitized at a scale of 1:14,500 or 1:5,000 from orthorectified digital color-infrared aerial imagery collected during the summers of 2005, 2006, 2009, and 2011 by the National Agricultural Imagery Program (NAIP). These data are intended for use in publications at a scale of 1:12,000 or smaller. This layer consists of two feature datasets: NHP_Layers and quadStatus. The NHP_Layers feature dataset contains the digital wetland and riparian mapping and consists of two feature classes: finalWater and provWater. The feature class finalWater contains data that have undergone three rounds of validation and mapping.
Uses of Wetland and Riparian Mapping in Montana

- Complete picture of wetland and riparian resources in Montana
- Evaluate wetland losses/gains
- Preliminary site assessment for the presence of wetlands
- Facility and transportation/corridor siting
- Conservation incentive programs
- Conservation area planning
- NAWCA grants
- Tribal wetland protection ordinances
- Restoration planning
- Fisheries protection
- Floodplain management
- Water quality protection
- Watershed restoration
- Plant and wildlife survey stratification
Enhancing Wetlands Data

- Cowardin classification identifies wetland type based largely on vegetation (biotic)
- Useful to have information on abiotic properties of wetlands
- Enhance the utility of wetlands data by adding HGM descriptors
LLWW: Landscape Position, Landform, Water Flow Path, Waterbody type

- Set of descriptors developed by Ralph Tiner with USFWS for the eastern U.S.
- Based on geomorphic setting, water source, and hydrodynamics
- Links wetland type with wetland function (biotic/abiotic)
- Predict potential wetland function
LLWW Descriptors

Landscape Position (L):
• Lentic (LE) – lake shores
• Lotic (LO) – river/stream shores and floodplains
• Terrene (TE) – surrounded by upland

Landform (L):
• Basin (BA) – depression
• Floodplain (FP) – subject to river/stream overflow
• Slope (SL) – occurs on a slope or has groundwater inputs
• Flat (FL) – occurs on relatively flat landform and has precipitation as primary input

Image from: http://www.aswm.org/wetland-science/wetlands-one-stop-mapping/2810-llww-
LLWW Descriptors

Water Flow Path (W):  
- Inflow (IN)  
- Outflow (OU)  
- Throughflow (TH)  
- Bidirectional (BI)  
- Isolated (IS)  

Waterbody Type (W):  
- Lake (LK)  
- Pond (PD)  
- River (RV)  
- Stream (ST)  

Image from: http://www.aswm.org/wetland-science/wetlands-one-stop-mapping/2810-llww-
Locate Wetlands with Significance for Particular Functions
Number of Wetland Acres with Potential for High Functional Performance

Potential Wetland Functions

- Water Storage
- Streamflow Maintenance
- Groundwater Recharge
- Nutrient Cycling
- Sediment Retention
- Shoreline Stabilization
- Native Plant Community Maintenance
- Terrestrial Habitat
- Aquatic Habitat
- Conservation of Wetland Biodiversity

Acres

- 100,000
- 80,000
- 60,000
- 40,000
- 20,000
- 10,000
- 0
LLWW in Montana

- predict changes in wetland function in rapidly developing watersheds
- required manual photointerpretation
- not feasible over large areas
- needed to adapt original classification to Montana
- needed to automate the process
LLWW in Montana

- received 2012 NSDI-CAP grant from the FGDC
- develop geoprocessing procedures
- develop training materials
- reviewed by project partners and technical advisors
LLWW in Montana

- ideally fully automate assignment of descriptors
- tradeoff between accuracy and efficiency
- fully automated approach: overall accuracy ranged from 60% in Oklahoma to 81% in Oregon
- certain wetland types can be assigned more accurately than others
- MTNHP developed semi-automated procedures
Limitations

- accuracy of source data (i.e., wetland mapping)
- accuracy of ancillary data layers used to assign LLWW descriptors
- individual wetland polygon may encompass more than one LLWW type
- level of subjectivity
LLWW Descriptors: Challenges

Combines:
- wetland ecology
- wetland hydrology
- GIS
LLWW Descriptors: Ancillary Data Layers

- Aerial Ortho-imagery
- Digital Raster Graphic
- High-resolution NHD
- 10m Digital Elevation Model
- Soil Survey Geographic Database
LLWW Descriptors: Challenges

- does the order in which descriptors are assigned matter?
- which polygons can be assigned in a fully automated way?
LLWW Descriptors: Example Select Queries

River (RV):

- Select by Attributes: Create a new selection: "ATTRIBUTE" LIKE 'R2UB%' OR "ATTRIBUTE" LIKE 'R2AB%'.
- Populate Waterbody field with “RV”.
- Select by Attributes: Create a new selection: “ATTRIBUTE” LIKE ‘R%UB%’ OR “ATTRIBUTE” LIKE ‘R%AB%’ AND “ATTRIBUTE” NOT LIKE ‘R%x’.
- Select by Location: select from the currently selected features from Target layer: check wetland layer.
- Source layer: NHDArea attribute = StreamRiver.
- Spatial selection method: Target layer(s) features intersect the Source layer feature (NHDArea).
- Populate Waterbody field with “RV”.
Creating a Value-Added Wetlands Layer: Enhancing the Utility of Wetland Mapping in Montana

The MTNHP creates digital wetland mapping using the Cowardin classification system of the National Wetlands Inventory (NWI). This wetland classification can be enhanced by incorporating descriptors to characterize hydrogeomorphic features that can be used to characterize potential wetland function. These descriptors are added to each wetland polygon to describe the landscape position, landform, water flow path, and waterbody type (LLWW) associated with each wetland. The addition of these descriptors can provide a more comprehensive picture of wetland type and potential wetland function.

Since the early 2000s, the NWI has been enhancing wetland data by adding LLWW descriptors to enhance the information in the existing wetland classification standard by providing information on potential wetland function.

LLWW descriptors describe:
- **landscape position** (relation of a wetland to an adjacent waterbody)
- **landform** (the physical shape of the wetland)
- **water flow path** (the direction water flows into and out of the wetland)
- **waterbody type** (lake, river, stream, or pond).

These enhanced wetland data can then be used to conduct landscape analyses of wetland function, assist in the development of conservation strategies, and increase
Creating a Value-Added Wetlands Layer: Enhancing the Utility of Wetland Mapping in Montana

KEY TO LLWW (LANDSCAPE POSITION, LANDFORM, WATER FLOW PATH, AND WATERBODY TYPE) DESCRIPTORS
Montana Natural Heritage Program, October 2013 (modified from Tiner 2011)

Key A-1: Key to Wetland Landscape Position Descriptors

1. Wetland is completely surrounded by upland (non-hydric soils) ..................................................... Terrene
   Go to Key B-1 for Landform Classification

2. Wetland is located in or along a lake or reservoir (permanent waterbody where standing water is typically deeper than 6.6 feet or larger than 20 acres), including streamside wetlands in a lake basin ................................................................. Lentic
   Go to Landscape Position Modifier for Lentic Wetlands below
   Go to Key B-1 for Landform Classification

   Note: Lentic wetlands consist of all wetlands in a lake basin (i.e., the depression containing the lake), including lakeside wetlands intersected by streams emptying into the lake. The upstream limit of lentic wetlands is defined by the upstream influence of the lake, which is usually approximated by the limits of the lake basin.

3. Wetland does not occur along a lake or reservoir ............................................................................. 3

4. Wetland is located in a river or stream (including in-stream ponds), within its banks, or on its floodplain ......................................................................................................................... 4

5. Wetland is not located in a river or stream or on its floodplain OR wetland is located along a stream but is NOT subject to frequent overflows. Instead, the wetland is maintained by groundwater inputs ................................................................. Terrene
   Go to Key B-1 for Landform Classification
Creating a Value-Added Wetlands Layer: Enhancing the Utility of Wetland Mapping in Montana

KEY TO LLWW (LANDSCAPE POSITION, LANDFORM, WATER FLOW PATH, AND WATERBODY TYPE) DESCRIPTORS

CODES FOR LLWW (LANDSCAPE POSITION, LANDFORM, WATER FLOW PATH, AND WATERBODY TYPE) DESCRIPTORS
Montana Natural Heritage Program, October 2013 (modified from Tiner 2011)

Waterbody Type:

1. Lake (LK):
   Cowardin code equivalent: (L1)

2. Pond (PD):
   Cowardin code equivalent: (PAB/PUB)
   a. Potential modifiers for Lakes and Ponds:
      Natural Lake (1)
      Dammed River Valley (2)
      Other Dammed Lake (3)
      Excavated (4)
   b. Potential Water Flow Paths for Lakes and Ponds:
      Inflow (IN)
      Outflow (OU)
Creating a Value-Added Wetlands Layer: Enhancing the Utility of Wetland Mapping in Montana

KEY TO LLWW (LANDSCAPE POSITION, LANDFORM, WATER FLOW PATH, AND WATERBODY TYPE) DESCRIPTORS

CODES FOR LLWW (LANDSCAPE POSITION, LANDFORM, WATER FLOW PATH, AND WATERBODY TYPE) DESCRIPTORS
Montana Natural Heritage Program, October 2013 (modified from Tiner 2011)

GLOSSARY OF TERMS

Basin – a landform occurring in a topographic depression that allows for the accumulation of water; water inlets and outlets are various or the wetland can lack inlets and outlets (see Isolated)

Bidirectional – a water flow path in which water moves horizontally as a result of changing water levels

Flat – a landform that receives water primarily through precipitation and has no groundwater inputs; examples of this landform typically have an impermeable soil layer

Floodplain – a landform occurring in an area influenced by fluvial or riverine processes; for the purposes of this classification, limited to the broad plain associated with large river systems with periods of flooding (greater than 100 years) and typically having alluvial

• fact sheet
• dichotomous key to LLWW descriptors
• list of LLWW codes
• glossary of terms
LLWW Descriptors: Next Steps

- Accuracy assessment
- Develop a tool
- Refine ancillary data layers
LLWW Descriptors: Challenges - Accuracy
LLWW Descriptors: Challenges
LLWW Descriptors: Next Steps

- Accuracy assessment
- **Develop a tool**
- Refine ancillary data layers
Develop Toolbox
LLWW Descriptors: Next Steps

- Accuracy assessment
- Develop a tool
- **Refine ancillary data layers**
Potentially Wet Soils
LLWW Descriptors: Next Steps

- Develop work plan for incorporating LLWW descriptors into existing wetland mapping
- Develop a functional correlation matrix for Rocky Mountain wetlands
LLWW Descriptors: Next Steps

• Develop work plan for incorporating LLWW descriptors into existing wetland mapping

• Develop a functional correlation matrix for Rocky Mountain wetlands
Develop Correlation Matrix for Montana

Correlating Enhanced National Wetlands Inventory Data with Wetland Functions for Watershed Assessments: A Rationale for Northeastern U.S. Wetlands

Ralph W. Tiner
Regional Wetland Coordinator
U.S. Fish & Wildlife Service
Northeast Region
300 Westgate Center Drive
Hadley, MA 01035
Useful Links

• http://mtnhp.org/wetlands/
• http://mtnhp.org/nwi/
• http://gisservice.mt.gov/ArcGIS/rest/services/MSDI_Framework/WetlandsRiparian/MapServer
Acknowledgments

- NSDI-CAP grant
- Ralph Tiner – U.S. Fish and Wildlife Service
- Colorado Natural Heritage Program: Joanna Lemly, Gabrielle Smith, Jeremy Sueltenfuss
- Dennis Lichtenberg – CNL World
- Steve Carpenedo - Montana DEQ
Questions?

Karen Newlon
Montana Natural Heritage Program
knewlon@mt.gov
406-444-0915